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The present paper discusses an implicit discontinuous spectral Galerkin method
for the solution of the compressible Euler equations. A matrix-free Newton—Krylov—
Schwarz algorithm with one-level and two-level nonoverlapping Schwarz precon-
ditioners is used to solve the implicit systems. The study shows that this method
is a factor of 50 faster than an explicit method that employs local time-stepping
to accelerate convergence to steady-state solution. Procedures using LU-SGS pre-
conditioner appear to provide the best performance. The two-level procedure is
found necessary for relatively fast convergence in the case of large numbers of mesh
elements. @ 2001 Academic Press
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1. INTRODUCTION

The discontinuous Galerkin method has recently become popular for the solution
systems of conservation laws. In its original formulation for the discretization of the neutr
transport equation resulting from Reed and Hill [19], the solution is computed element
element. This is not obviously possible for nonlinear problems, and these problems ca
treated by a discontinuous space-time discretization (leading to a global system of nonlit
algebraic equations); see Bar-Yoseph [1] and Bar-Yoseph and Elata [2]. For computati
ease, a frequently adopted approach employs explicit time discretization. The so-ca
Runge—Kutta discontinuous Galerkin (RKDG) method introduced by Cockburn and S
[6] uses a total variation diminishing (TVD) Runge—Kutta scheme developed by Shu a
Osher [21]. The time step is then limited by a (linear) stability condition that depends on
order of the Runge—Kutta method and on the order of the spatial discretization. The RK
method is easy to implement and has been successfully applied to a wide range of unst
problems [8, 11, 17, 18]. For steady-state computation, a common procedure uses a
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IMPLICIT DISCONTINUOUS GALERKIN METHOD 719

time-stepping technigue to accelerate convergence. However, the maximum time ste
still limited by a local stability condition. Thus, the convergence may become dramatica
slow for large-scale simulations.

Implicit solvers, which do allow large time steps, are widely used in the computatior
fluid dynamics community for the steady solution of nonlinear conservation laws [1(
Using finite-volume or finite-element discretizations, these solvers generally rely on so
linearization of a nonlinear operator, which leads to a Newton-like method. Iterative meth
and approximate factorization methods are then used to solve the linear system.

The Newton—Krylov—Schwarz method has recently emerged as a promising techni
for the parallel implicit solution of large-scale aerodynamics problems [13]. It combines t
Newton—Krylov method as the nonlinear solver and the Krylov—Schwarz iterative meth
for the solution of the linear system arising from the Newton linearization. The Krylov
Schwarz method has become popular especially in parallel computing because of its loc:
It is specially well suited for the discontinuous spectral Galerkin method, since each s
domain can be treated separately.

In [3] Bassi and Rebay show the efficiency of the generalized minimum residual iterat
method (GMRES) [20] using a simple block Jacobi preconditioner for the implicit solutic
of the compressible Navier—Stokes equations. In this work, we propose a “matrix-fre
Newton—Krylov—Schwarz algorithm for the implicit discretization of the discontinuou
Galerkin method. In the “matrix-free” approach, the Jacobian-vector product within t
Krylov algorithm is approximated by the Frechet derivative [4]. This permits conside
able saving in storage. One-level and two-level, additive and multiplicative nonoverlapp
Schwarz preconditioners are implemented and compared.

2. DISCONTINUOUS GALERKIN METHOD

Consider a conservation equation for a quantity a two-dimensional regio®

au
5+V~F(u)=o, Q)

whereF = (F, G)!is a flux vector. Let the domaiR be partitioned intdVe nonoverlapping
subdomains, or elemenf;. The discontinuous Galerkin method is a finite-element metho
in which the approximation space#,, may be discontinuous across element interfaces. |
the semi-discrete formulatio,, contains only spatial functions

Vh={velYD):v|D e PD),i=1,..., N},

whereP (D) is a polynomial space defined @h. The degrees of freedom of the solution
are then obtained by solving a weak formulation of (1).

SpanB;) = P(D;), Supfv;) =D, £=0,...,N—L1

Then the approximate solutian, satisfies

/<8uh+V~F(uh)>vdx:0, Vv e B 2)
Jp \ ot
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in each elemerD;. Using Green’s formula, Eq. (2) is recast as

%V—F(uh) Vvdx+2/ F(uh) -nvds=0, Vveb, 3)

D; 9Dy

wheredD; is the boundary oD; andn denotes the unit outward normal vector. Since the
data is discontinuous across the interface of contiguous domains, two valyga|pinside

D anduih outsideD;) are available at the interface. A numerical flex,m is then used to
evaluate the interface flux in the last integral of the Eq. (3)

F(un) -Nlap, = Fnum(uihs U|j1, I’l). 4)

3. IMPLICIT TIME DISCRETIZATION

We discuss here an implicit algorithm based on the backward Euler time integrati
scheme. Although it is unconditionally stable, it is time-accurate only if its time step r
solves the temporal scales of the problem. The temporal accuracy requirements in r
aerodynamic flows are far less stringent than the stability limit of most popular time d
cretization schemes. In such cases, the present algorithm becomes highly competiti\
that it permits relatively large time steps although constrained by the characteristic ti
scale of the problem. This advantage is lost in the case of direct numerical simulatior
transitional and turbulent flows where the constraints of time scales that need to be reso
are more stringent than the stability limit. This advantage can be exploited to the utm
in the case of steady flows, which is the focus of the present work. A naive way to finc
steady-state solution is to compute a time-accurate process to the point where all tran:
effects have disppeared, assuming of course they do. An expedient way is to compu
time-like process wherein the time path is not necessarily physical. Iterative or relaxat
techniques to solve the set of coupled equations resulting from the time-independent te
and boundary conditions may be identified with this fictitious time scheme [14].

In this section, the backward Euler time integration is applied to (3) in the element
wherein the solution is represented gy

/2“: 'dx—/ F(ul' + 8ul) - Vv dx

+]Z/ap,, Frum(uf' +8ul, uf +8uf.n)vido =0, 1=0,....N—-1, (5
where the superscriptindicates the time

st=t"1—t" and sul =uMt—u (6)
Setting

F(ui +8u) = F(ui) + Aui)éu; + O(suf)

and

Foum(Ui + 8Ui, Uj + 8Uj, N) = Frum(Ui, Uj, N) + Al uj + A% 8uj + O(6%)
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with
FW  pr_ (U V) o Fum(U. V. )
ou au ’ B v

A =

’

then dropping terms of second and higher order, (5) becomes

sup :
St Idx—/ A(ul) - 8u - Vv, dx
D i

+Z/ (Afsu) + Ajsul)vido =R, (U™, 1=0,....N=1 (7

0Djj

whereR; is the residual

R.|(u”)_/ F(ul") Vv,dx—Z/ Foum(uf', U, n) v do.

0Dj

Now, letd = (04, ..., Opy) With G = (G, . .., O; n—1) be the global vector of expansion
coefficients folu = (uy, ..., uy;) such that

N-—-1
Ui = 0V, i=1.. N
1=0

Then the scheme (7) can be written in the equivalent matrix form

M@uMsa" = R@uM) (8)
with
R n
M = 2 - IR,
ot al
where the matrixy = diag(yi, ..., yx;) is the block diagonal mass matrix with

Vil = / Viv) dx
andR(u) is the global vector of the residual

R(W) = (Ru(W), ..., Ry, (W), Ri(u) = (R, ..., Rn-a(Ww).

In steady-state computations, the left-hand side of (8) vanish&8 tends to zero. The
spatial accuracy of the solution depends solely on the discretization of the reRidumal
the limit st — oo the scheme represented by (6), (8) reduces to a Newton iteration. To
a large time step and attain quadratic convergence, the spatial discretization of the left-I
side must be consistent with the discretization of the right-hand side.
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4. KRYLOV-SCHWARZ

We now address the solution of the linear system (8) that results from the Newton-|
algorithm. The nonsymmetric nature of the large sparse madrisuggests the use of a
Krylov subspace based algorithm to solve (8). The key advantage of this method is |
information about the Jacobian matrix needs to be accessed only in the form of matrix—ve
products. As these products can be approximated using finite differences, the algorithm
be implemented without forming the Jacobian matrix explicitly [4]:

oR(UW) . R(u+hv) — R
vV = .
ou h

(9)

This implementation, termed “matrix-free,” yields a considerable saving in storage co
pared to the standard implementation.

It has been implicitly assumed in the previous section that the numericaFfluxis
continuously differentiable. However, one can use the formula (9) to handle a continut
but nondifferentiable flux such as the Roe flux, in which case it is found that the quadre
convergence of the Newton method is lost.

The Krylov method employed in this work is the generalized minimum residual methc
(GMRES) [20]. The parametehn in (9) is computed following Brown and Saad [4]
via

NG T ; T
Wmaﬂutypllle,IU vl}sign(u’ v),
2

wheree is the machine epsilon ang, > 0 is a typical size of the componentsnbrovided
by the user. By default we sat,, = 10-8 in our computations.

4.1. Preconditioning

The matrixM is generally ill conditioned wheét is large. When a polynomial basis of
degree at most, is used inVy, then the condition number of the advection operator on
single element grows Iikap2 [5]. The use of a preconditionét is thus necessary. Instead
of (8), we solve the system

P-IM st = P~ IR(u), (10)

whereP is a nonsingular matrix.

Single-Level Preconditioner

We have implemented two preconditioners for the discontinuous spectral Galer
method. They are single-level preconditioners. The first corresponds to a block-diagc
preconditioner and the second is related to LU-symmetric Gauss—Seidel (LU-SGS) prec
ditioner.

Let us write the matrixM asM = L + D + U wherelL is a block strictly lower tri-
angular matrix,U is a block strictly upper triangular matrix, arid is a block diago-
nal matrix, each withN x N square blocks. Each blodkof D represents the contri-
butions from the elemer®;. The matrix vector produdt §0 = ([U80]y, ..., [US0]A,),
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LsG = ([L&80]y, ..., [LSO]x,) andDSG = ([DSA]4, ..., [DSO] ;) can be computed as

[Usa); = Z/a ! ViAZ su;j do (11)

j>i

[L&0]; = Z/a ! ViA%su;j do (12)

j<i

SuUj :
[Dsa]; = /D%v;dx—/DA(u{‘)~5ui~Vvidx

+> / VAl su; do (13)
/oy

A simple choice is
P =D. (14)

It corresponds to a block-diagonal preconditioner or a block-Jacobi preconditoner.
Another preconditioner [15]

P=(D+L)D}D+U) (15)

is the so called LU-symmetric Gauss—Seidel (LU-SGS) introduced by Jameson and Y
[12] for the implicit resolution of the Euler equation on structured meshes and extenc
to unstructured meshes in [15]. The implementation of this preconditioner in the case
the discontinuous Galerkin method is straightforward using Eqgs. (11)—(13). Indeed,
GMRES algorithm applied to (10) involves the solution of systems of the type

Py =X,
which can be decomposed in two steps:
Forward sweep:
(D+ L)y =%
Backward sweep:
(D +U)y = Dy".

Note that there is no need to stddeandL since the forward and backward sweep can b
expressed as

Ji =Dt —[LY'T), i=1.... Ne
9i =97 — DU, i =Ne, ..., L
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Only the block diagonal matri®—* needs then to be stored. For both preconditioners, a
exactLU solver is used to comput@ 1. In our implementation, we have also stored the
face values ofi to facilitate the efficient computation étﬁ in (11) and (12).

In general, the numerical flus,,mis nonlinear and the JacobiafA$ andA? are difficult
to compute. Since explicit forms of these Jacobians are only needed in the evaluation o
preconditionerP, approximate Jacobians which are easier to calculate are used. Howe
one should be careful in the choice of the JacolfidrandA? to avoid having a singular
preconditione® whenst — oo. One possibility is to take

Aui,n) + A, n)|

2 s

5 (16)

Ailj: ,Ai2j:

which guarantees a nonsingular maixf A is nonsingular. Furthermore, the nonnegativity
of the eigenvalues oA! and the nonpositivity of the eigenvaluesAt are important for
the efficiency of the preconditioner (15) as mentioned in [12].

Two-Level Preconditioner

The convergence rate of the single-level preconditioned method may deteriorate w
Ne becomes large, especially for the block Jacobi preconditioning, since information
exchanged only between neighboring elements. This deterioration may be overcome
introducing a coarse grid solver, which has a global communication among all element

Let Vy denote the coarse grid space

Vi ={vel'D):v|Di=constant v|Df=0, k=1,..., e},
with |y the interpolation operator from the coarse grid to the fine grid
lh iV = Wy

N-1
V, .
(Iwun)lp, = UHlp, Z*l/ vidXx, Yun € Vh,
i—o N /D

and Jy the restriction operator form the fine grid to the coarse grid

JH i Vh > V4

(Jnup)lp, = updx, Vup € Vi,

IDil Jp,
with y = fDi (vi)?dx. The coarse grid operatiy, associated with/y is obtained by
settingv = 1 in Eq (11)—(13). In factMy corresponds to the Jacobian form of a first-ordel
finite-volume discretization of (1). Keeping the same notation, a two-level preconditior
P can be constructed as

Pl=IyM3' 3y + P,

whereP; is the single-level preconditioner (14) or (15).
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5. SPACE DISCRETIZATION

Although the choice of basis functions does not affect the accuracy of the discontinu
Galerkin method, it may greatly impact the implementation and the efficiency of the alc
rithms described above. In particular, for a nonlinear flux, the formula (9) for the matt
vector product involves several forward transforms from the Galerkin space to the phys
space at each iteration. This must be done efficiently in order to have an efficient mett
In this section, we describe a collocation form of the discontinuous Galerkin method
quadrilateral elements, for which the transformation from the Galerkin space to the phys
space is the identity.

To evaluate Eq. (3), it is convenient to map the elenf@ninto the reference square
$ =[—1,1] x [=1, 1]. Under such a mapping, Eq. (3) becomes

1 1
VveBi,// J—déd //IE(ui)~Vg,,vd§dn
—-1J-1

4 1
+ Z/anum(Ui,Uj,ﬁj)VdSZO, (17)
=17~

where €, ) are the local coordinates i, i, is the outward normal vector of theh face
of © and

=(F,6), F=y,F—x,G, G=—yvF+xG, JEn) =Xy, — XV

To compute the integral arising in (17) the Gauss quadrature rule is used,

._\

n—

(%) ox = / (&) de, (18)

k

Il
o

to replace the integral. Here, thg are the Legendre—Gauss collocation nodes associat
with the weightswy. The quadrature formula (18) is exact for polynomial functibrof
order up to & — 1. We refer to [5] for further details on the properties of the Legendr
polynomials.

For elements with straight sides, the Jacohlas linear and the outward normal vectors
fi are constant along a face. The integrals in (17) are then evaluated exactly when the |
functions are polynomials of degree at mast 1. According to Cockburn and Shu [7],
the formal order of accuracy of the approximation scheme isth#érhe sides are curved,
however, the Jacobiahis a polynomial of order greater than 2 and an additional quadratu
error is incurred as the quadrature rule (18) is no longer exact.

For quadrilateral elements, a natural choice is to use tensor product basis functions. U
Lagrange interpolating polynomia{.y }x—o....n_1 Of order Iess tham in thes direction
and Lagrange polynomiald.}i—o,._.
functions, the approximate solutlonIm reads

.....

n-1m-1

iE ) =YY ualk@Lim),

k=0 1=0
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where the Lagrange polynomials have nodes at the Legendre—Gauss quadrature p
and

Uk = Ui (X, Yi)-

With this choice of basis functions, the transformation operator from the Galerkin space
physical space is the identity and the mass matrix is diagonal

1 1
/1/1Li(s>Lk<§)L,~<n>Ll(n> dedn = 581w,

wherei,k=0,...,n—1,j,1 =0,...,m—1.

In order to implement the method described in Section 4, it is convenient to write (1
in a matrix form. LetW be the mass matrixD: andD, be the differentiation matrix in
the & andn directions, respectively] be the diagonal matrix whose entries are the va
lues of the Jacobiad at the collocation points, s, be the interpolation matrix on the
face j, andW; be the diagonal matrix whose entries are the integration weights on t
face]j

{WHitnjktnt = Sikéji ke
{De}isnjken = 81 Li(&)
{Dy}i+njksnl = SikLi(nj).
{1 dikent = Sy (12 D72H) ¢ =13
{1} kent = 8ji L (—1PF-D/2H) g =24
{(Walik = dikox; a=1,3
{(Wglji =8jlo; B=24

withi,k=0,...,n—=1;j,1 =0,..., m— 1. Then we can write the Eq. (17) in the matrix
form

4
Ui t t & t =
WJ—= — (DF + D, G)Wu; + ; 1% Wi Frum =0,

whereﬁnum is the vector of the numerical flux at the fageUsing the same notation, the
ith diagonal block of the matri® in the preconditioners (14) and (15) reads

4
Di =WJ — (DL A+ Dy B)W + > 1% AL Wiy,
j=1

with

aF (u)

7 gzaé‘(“)- s1 _ Fun
ou

A= ;A
au ] au

The obvious advantage of using Lagrange basis functions is that the expansion co
cients of the approximate solution coincide with their nodal values at the quadrature poil
Therefore, the evaluation of nonlinear functions at the quadrature points is straightforw:
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6. NUMERICAL RESULTS

We now present numerical results from the computation of the two-dimensional stea
state compressible inviscid flows governed by the Euler equations (in conserva
form)

ou_ 9F 3G _ .
at - ax - ay
with
o pou pv
u 2 puv
u= | F=|"" TP | cw=|",
pY puv pv-+ p
E u(E + p) v(E + p)

In most of the numerical tests performed, we compare the implicit method to the expl
method in order to emphasize the efficiency. The explicit method uses a second-o
Runge—Kutta time discretization with a local time-stepping technique. We use the Os
approximate Riemman solver as the numerical 4. The simple Steger—Warming split-
ting [22], which coincides with (16), is used as the approximate Jacobian when construc
the preconditioneP.

All computations are started with uniform flow and CFL number unity unless specifit
otherwise. In order to advance the solution to steady-state, the time step is updated adap
using the “switched evolution relaxation” (SER) method [16], where the CFL number
increased in inverse proportion to the residual reduction:

IRW™ Y

CFL" = Min(CFL" %, 10°) ——~%.
IRUM |

Since the storage requirements of GMRES increase linearly with the number of see
directions in the Krylov subspace, the GMRES is terminated when the size of the Kryl
subspace is equal to a parametelGMRES is then restarted using the most recent solutio
as the initial guess. This is known as the restarted GMRES algorithm. In gemeisl,
chosen between 5 and 30 [20].

The choice of an optimal parametarto restart GMRES depends on the problem anc
on the order of the solution technique. For the discontinuous spectral Galerkin metf
the condition number of the preconditioned matrix degrades as the order of the met
increases. In order to use a fixed parametaghat accommodates different orders of ap-
proximation in the numerical tests, we find= 30 in our computations to be optimal in
a sense.

The GMRES iterations are also terminated when the residual norm reaches an exit t«
ancep that depends on the residuR{u") at each Newton step:

B = 0.01 R(uM|. (19)

The Newton correction is then solved only approximately leading to the so-called “inex
Newton methods” [9].

The computations were performed on an SGI origin 200 (180 Mhz R10000 CPU w
32 kbytes of primary cache and 2Mbytes of secondary cache).
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6.1. Subsonic Flow in a Channel with a Circular Bump

The first test is that of a Mach 0.2 subsonic flow over a circular bump in a chann
The computations are performed on a coarse grid containing 70 elements and on a
grid consisting of 264 elements. The coarse grid geometry and collocation points for fif
order spatial discretization are shown in Fig. 1, along with the contours of computed Me
number.

Figure 2 displays comparisons of the convergence histories among the implicit schel
with fifth-, sixth-, and seventh-order spatial discretization on the coarse grid. We note t
the convergence behavior of the implicit method can be divided in two phases. In the f
phase, the solution is far from the steady state, the time steps are small yielding a diagor
dominant matrixM. Many Newton steps are then performed during this stage but only fe
GMRES inner iterations are needed to satisfy the convergence criterion (19). During
second phase, the convergence is steep and the steady solution is reached within only
Newton iterations. Unlike in the first phase, the matvixs no longer diagonally dominant
in the second phase and many inner GMRES iterations are performed to reach converge
The performance of the implicit method depends then on the efficiency the preconditio
P. This second phase starts when the solution is near the steady state in our case whe
residual is approximately 16.

We observe in Fig. 2 that increasing the order of spatial discretizations increases
number of nonlinear Newton steps in the first phase since more iterations are neede
damp high frequencies. On the other hand, we note in Table | that the average numbe
the inner GMRES iterations remains approximately the same for different orders of spa
approximation on the same mesh.

Itis apparent from Table | that the algorithms using block Jacobi preconditioners perfo
twice as many inner GMRES iterations as those using the block LU-SGS precondition
Thus, the LU-SGS preconditioner is more efficient than the Jacobi preconditioner. We
also in Table | that only a small improvement is obtained in the average number of GMR
iterations when applying the two-level preconditioners. As a result the performance of
Newton—Krylov—Schwarz algorithm on the coarse mesh with the one-level precondition
is better than with the two-level preconditioners.

iSSHESEHAASE 5 55t maiimnt el ERUARE AL CREEL S ISE)
e e A
IEEEEE EEOAEE SulE

.206217

0

A\

FIG. 1. 70-element mesh with fifth-order spatial discretization (top) and Mach number contours (bottom).
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FIG. 2. Convergence history on the coarse mesh (70 elements) with the one-level and two-level block Ja
preconditioners (top) and the one-level and two-level block LU-SGS preconditioners (bottom). Seventh-o
( one-level, ——— two-level), sixth-order (----- one-level, o-- two-level), fifth-order (---- one-level;--o---
two-level). Log residual vs. CPU time (left), Log residual vs. Outer Newton iteration number (right).

The computation on the fine mesh has been performed with third- and fourth-or
spatial discretizations. Table | shows over 37% improvements in the average numbe
inner GMRES iterations when using the two-level block Jacobi preconditioner. This led
a faster convergence in CPU time for the algorithm using the two-level method as shc

in Fig. 3. For the block LU-SGS preconditioner, the improvement in the average numi
of GMRES iterations with the two-level method is modest.

TABLE |
Average Number of Inner GMRES lIterations for the Subsonic Channel Flow
Using One-level and Two-level Block Jacobi and Block LU-SGS Preconditioners
on the Coarse (70 Elements) and the Fine (264 Elements) Grids

BJ1 BJ2 GS1 GS2
Order 3 (264 elements) 44.7000 26.5417 15.8571 11.9167
Order 4 (264 elements) 39.6818 24.7407 15.9583 11.7778
Order 5 (70 elements) 23.7000 17.3043 9.1364 7.8750
Order 6 (70 elements) 22.4545 17.4615 8.6800 7.6667

Order 7 (70 elements) 20.6250 17.3103 7.6667 7.2333
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N

20 40 80 1)00 120 140 160

60
CPU time(sec,

20

60 80 100 120 0 5 10 15 20 25 30
CPU time(sec) iteration number

FIG. 3. Convergence history on the fine mesh (264 elements) with the one-level and two-level block Jac
preconditioners (top) and the one-level and two-level block LU-SGS preconditioners (bottom). Fourth-order
one-level, —o— two-level), third-order ¢ - one-leve] - - 0 - - two-level). Log residual vs. CPU time (left), Log
residual vs. outer Newton iteration number (right).

Finally, we present in Fig4 a comparison of the convergence histories between tt
implicit and the explicit algorithms on the fine and the coarse meshes. The implicit solv
converge about 50 times faster than the explicit method.

6.2. Transonic Flow in a Convergent-Divergent Nozzle

The isentropic flow in a convergent-divergent nozzle is computed as a transonic test ¢
The geometry and the mesh are presented in Fig. 5. The nozzle consists of a convel
section with a half angle of 45and a diverging section with a half angle of°13he
corresponding quasi-one-dimensional nozzle solution is used as initial condition.

First, the solution is computed on a mesh containing 132 elements (see Fig. 5) v
third-, fourth-, and fifth-order spatial discretizations. Figure 2 illustrates the converger
history of the implicit method. As in the previous test case, the one-level block LU-SC
preconditioner is more efficient than the two-level one. The improvement in the avere
number of GMRES iterations is negligible when using the two-level block LU-SGS preco
ditioner. For the block Jacobi preconditioners, the use of the two-level preconditioner |
to 30% improvement for the fifth-order scheme and to more than 40% improvement for:
third and fourth in the average number of inner GMRES iterations. This results in a fas
convergence rate in CPU time for the two-level method. Again, the results indicate that
creasing the order of spatial discretization increases the number of outer Newton iterat
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FIG. 4. Convergence history of the implicit method using the two-level block Jacobi (BJ2) and the one-le
block LU-SGS (GS1) preconditioners (top), and the explicit method (bottem).gnd. - o - -) third-order method
on the fine mesh;( - - and - - o - -)sixth-order method on the coarse mesh.

but the average number of inner GMRES iterations remains approximately the same
Table II).

Next, the solution is computed on three different meshes with the same number of
grees of freedom. The fine mesh is obtained by dividing each element of the medi
mesh (132 elements) into four cells and the coarse mesh is obtained by gathering
four neighboring elements of the medium mesh into one cell. The fine mesh conte
528 elements, the medium mesh 132 elements, and the coarse mesh 33 elements. Th
respectively discretized with second-, fourth-, and eighth-order methods. The numbe
degrees of freedom in each mesh is then 8448. As expected we can see from Fig. 7
the two-level preconditioners are more efficient as the mesh is refined. The improven
is dramatic for the block Jacobi method with a speedup of more than a factor 2 on the
mesh.

The comparison between the implicit and the explicit method is presented in Fig.
The best performance is obtained with the Newton—Krylov—Schwarz method using
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FIG.5. Geometry and grid with fifth-order spatial discretization (top) and Mach number contours (bottom)
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FIG. 6. Convergence history on the medium mesh (132 elements) with the one-level and two-level blc
Jacobi preconditioners (top) and the one-level and two-level block LU-SGS preconditioners (bottom). Fifth-or

(— one-level, —o— two-level), fourth-order { - one-leve] - - o - - two-level), third-order {- - one-level, - 0 - -
two-level). Log residual vs. CPU time (left), Log residual vs. outer Newton iteration number (right).
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number (right).

one-level LU-SGS preconditioner, which is over 50 times faster than the expli

method.

Figures 7 and 8 show that the scheme with order 4 takes less CPU time to converge
the scheme of order 2. This is due to the fact that the average number of inner GMF
iterations increases as the number of elements increases while it remains approximatel
same for different orders of spatial approximation on the same mesh (see Tables | an

TABLE Il

Average Number of Inner GMRES lterations for the Transonic Nozzle Flow Using
One-Level and Two-Level Block Jacobi and Block LU-SGS Preconditioners on Coarse
(33 Elements), Medium (132 Elements), and Fine (528 Elements) Grids

BJ1 BJ2 GS1 GS2
Order 2 (528 elements) 60.0000 15.8889 10.4615 8.0000
Order 3 (132 elements) 22.0400 13.1481 6.6296 6.4074
Order 4 (132 elements) 20.5161 11.9706 5.7812 5.7647
Order 5 (132 elements) 17.7143 12.4634 5.7895 5.6585
Order 8 (33 elements) 10.3590 9.0465 4.4250 4.7907
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FIG. 8. Convergence history of the implicit method using the two-level block Jacobi (BJ2) and the one-ley
block LU-SGS (GS1) preconditioners (top), and the explicit method (botteam). &nd- - o - -) second-order on
the fine mesh,-(- - - and - - o - -)fourth-order on the medium mesh, (— and —o-) eighth-order on the coars
mesh.

The scheme with order 4 (132 elements) and the scheme with order 2 (528 elements)
the same convergence rate in the first phase where many Newton steps are performec
only few inner GMRES iterations. In the second phase, where superconvergence occ
Table Il shows that the scheme with order 2 requires more inner GMRES iterations tt
the scheme with order 4 which results in a slower convergence for the lower order sche

6.3. Subsonic Flow Over a Three-Element Airfoil

The third example computes the flow over a three-element airfoil. The grid and geome
for a fifth-order spatial discretization scheme are shown in Fig. 9. The mesh is higl
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s

FIG. 9. Geometry and grid with fifth-order spatial discretization (top). Mach number contours (bottom).

unstructured and contains 295 quadrilateral elements. The number of degrees of free
from the spatial discretization with a fifth-order method is 29500. The freestream conditi
is set to Mach 0.2 at zero degree angle of attack.

The convergence history of the Newton—Krylov—Schwarz algorithm with different pr
conditioners is displayed in Fig. 10. We can see from the computations that the two-le
method is much more effective than the one-level method. From Table Ill, we note that
average number of inner GMRES iterations decreases by a factor 4 with the two-level bl
Jacobi preconditioner and by a factor 2 with the two-level block LU-SGS precondition
The two-level implicit algorithms with the block Jacobi and the block LU-SGS precot
ditioner converge 68% and 34% faster in CPU time, respectively, than their single-le
counterparts. As in the previous test case, we note that the use of a two-level methc
necessary for the block Jacobi preconditioner when the grid contains a large numbe
elements.



736 RASETARINERA AND HUSSAINI

TABLE IlI
Statistics for the Newton—Krylov—Schwarz Algorithm for the Subsonic Flow
Over a Three-Element Airfoil

BJ1 BJ2 GS1 GS2
Total CPU time (s) 1687.73 1004.39 1279.29 952.96
Average number of GMRES iterations 76.058 18.7040 26.0244 12.6852
Number of outer Newton iterations 68 124 81 107
Total number of iterations 5248 2338 2134 1370
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FIG. 10. Convergence history of the Newton—Krylov—Schwarz algorithm using the one-level (—) and tt
two-level (—o—) block Jacobi and the one-level ¢ -) and the tvo-level (- - 0 - -) block LU-SGS preconditioners

with a fifth-order spatial discretization. Log residual vs. CPU time (top), Log residual vs. outer Newton iterati
number (bottom).
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7. CONCLUDING REMARKS

In summary, the implicit discontinuous spectral Galerkin method is applied to thr
prototypical aerodynamic problems—subsonic flow in a channel with a circular bun
transonic flow in a nozzle, and subsonic flow over a three-element airfoil. Both block Jac
and LU-symmetric Gauss—Seidel preconditioners are implemented. The latter is foun
general to provide a more efficient method. The convergence rate of a discontinuous spe
Galerkin method may become slow considerably with increasing number of elements
a two-level preconditioner is found to ameliorate the convergence rate.

For a small number of elements however, the one-level LU-SGS preconditioner perfol
better than the two-level preconditioner. The increase in the number of the outer New
iterations with the two-level method and the overhead of the two-level LU-SGS methoc
comparison with the one-level LU-SGS method lead to a larger CPU time for converge
when used with small or moderate number of elements. However, the two-level metho
essential when the number of elements is large, and the improvement may be drama
in the case of three-element airfoil.

The overall performance of the implicit version of the method is orders of magnitu
better than an explicit method. Thus, such methods appear to provide a viable alterns
to the traditional finite-volume and finite-difference methods for aerodynamic problen
They do require more computation time per node, and this may prove advantageous ir
context of a computer’s communication speed always lagging behind its computation sp
Furthermore, the algorithms that are required to resolve the flow physics are necessari
high-order accuracy. In addition to these features, their robustness and easy parallelizal
will make these methods more popular in the future.
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